dc.creatorKitzberger, Thomas
dc.creatorFalk, Donald A.
dc.creatorWesterling, Anthony L.
dc.creatorSwetnam, Thomas W.
dc.date.accessioned2018-11-13T19:48:43Z
dc.date.accessioned2022-10-15T08:21:40Z
dc.date.available2018-11-13T19:48:43Z
dc.date.available2022-10-15T08:21:40Z
dc.date.created2018-11-13T19:48:43Z
dc.date.issued2017-12-15
dc.identifierKitzberger, Thomas; Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.; Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America; Public Library of Science; Plos One; 12; 12; 15-12-2017; 1-24; e0188486
dc.identifier1932-6203
dc.identifierhttp://hdl.handle.net/11336/64403
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4364543
dc.description.abstractPredicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.
dc.languageeng
dc.publisherPublic Library of Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0188486
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188486
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectWILDFIRE
dc.subjectCLIAMTE CHANGE
dc.subjectANNUAL AREA BURNED
dc.subjectSNOW DURATION
dc.titleDirect and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución