dc.creatorCollier, N.
dc.creatorDalcin, Lisandro Daniel
dc.creatorCalo, V.M.
dc.date.accessioned2019-06-21T00:59:38Z
dc.date.accessioned2022-10-15T08:15:20Z
dc.date.available2019-06-21T00:59:38Z
dc.date.available2022-10-15T08:15:20Z
dc.date.created2019-06-21T00:59:38Z
dc.date.issued2014-11
dc.identifierCollier, N.; Dalcin, Lisandro Daniel; Calo, V.M.; On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 100; 8; 11-2014; 620-632
dc.identifier0029-5981
dc.identifierhttp://hdl.handle.net/11336/78604
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4363999
dc.description.abstractSUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.
dc.languageeng
dc.publisherJohn Wiley & Sons Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/nme.4769
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectASYMPTOTIC ANALYSIS
dc.subjectCOLLOCATION
dc.subjectCOMPUTATIONAL EFFICIENCY
dc.subjectFINITE ELEMENTS
dc.subjectISOGEOMETRIC
dc.titleOn the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución