dc.contributorNayak, Richi
dc.contributorIchalkaranje, Nikhi
dc.contributorJain, Lakhmi C.
dc.creatorGodoy, Daniela Lis
dc.creatorAmandi, Analia Adriana
dc.date.accessioned2021-05-07T04:48:51Z
dc.date.accessioned2022-10-15T08:11:28Z
dc.date.available2021-05-07T04:48:51Z
dc.date.available2022-10-15T08:11:28Z
dc.date.created2021-05-07T04:48:51Z
dc.date.issued2008
dc.identifierGodoy, Daniela Lis; Amandi, Analia Adriana; Modeling interests of Web users for recommendation: A user profiling approach and trends; Springer Verlag Berlín; 130; 2008; 41-68
dc.identifier978-3-540-79139-3
dc.identifier1860-949X
dc.identifierhttp://hdl.handle.net/11336/131608
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4363752
dc.description.abstractIn order to personalize Web-based tasks, personal agents rely on representations of user interests and preferences contained in user profiles. In consequence, a critical component for these agents is their capacity to acquire and model user interest categories as well as adapt them to changes in user interests over time. In this chapter, we address the problem of modeling the information preferences of Web users and its distinctive characteristics. We discuss the limitations of current profiling approaches and present a novel user profiling technique, named WebProfiler, developed to support incremental learning and adaptation of user profiles in agents assisting users with Web-based tasks. This technique aims at acquiring comprehensible user profiles that accurately capture user interests starting from observation of user behavior on the Web.
dc.languageeng
dc.publisherSpringer Verlag Berlín
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-540-79140-9_3
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-540-79140-9_3
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceEvolution of the Web in Artificial Intelligence Environments
dc.subjectUSER PROFILING
dc.subjectRECOMMENDER SYSTEMS
dc.titleModeling interests of Web users for recommendation: A user profiling approach and trends
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/bookPart
dc.typeinfo:ar-repo/semantics/parte de libro


Este ítem pertenece a la siguiente institución