dc.creatorD'Alfonso, Lisi
dc.creatorJeronimo, Gabriela Tali
dc.creatorSolernó, Pablo Luis
dc.date.accessioned2020-01-07T18:53:45Z
dc.date.accessioned2022-10-15T08:11:03Z
dc.date.available2020-01-07T18:53:45Z
dc.date.available2022-10-15T08:11:03Z
dc.date.created2020-01-07T18:53:45Z
dc.date.issued2014-05
dc.identifierD'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis; Effective differential Lüroth's theorem; Academic Press Inc Elsevier Science; Journal of Algebra; 406; 5-2014; 1-19
dc.identifier0021-8693
dc.identifierhttp://hdl.handle.net/11336/93864
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4363722
dc.description.abstractThis paper focuses on effectivity aspects of the Lüroth's theorem in differential fields. Let F be an ordinary differential field of characteristic 0 and F〈u〉 be the field of differential rational functions generated by a single indeterminate u. Let be given non-constant rational functions v1,vn∈F〈u〉 generating a differential subfield G⊆F〈u〉. The differential Lüroth's theorem proved by Ritt in 1932 states that there exists v∈G such that G=F〈v〉. Here we prove that the total order and degree of a generator v are bounded by minjord(vj) and (n d(e +1) +1)2e +1, respectively, where e:=maxjord(vj) and d:=maxjdeg(vj). As a byproduct, our techniques enable us to compute a Lüroth generator by dealing with a polynomial ideal in a polynomial ring in finitely many variables.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869314001252
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jalgebra.2014.02.022
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject12H05
dc.subject12Y05
dc.subjectDIFFERENTIAL ALGEBRA
dc.subjectDIFFERENTIATION INDEX
dc.subjectLÜROTH'S THEOREM
dc.titleEffective differential Lüroth's theorem
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución