dc.creatorAimar, Hugo Alejandro
dc.creatorGomez, Ivana Daniela
dc.date.accessioned2019-11-12T22:59:05Z
dc.date.accessioned2022-10-15T08:04:33Z
dc.date.available2019-11-12T22:59:05Z
dc.date.available2022-10-15T08:04:33Z
dc.date.created2019-11-12T22:59:05Z
dc.date.issued2018-02
dc.identifierAimar, Hugo Alejandro; Gomez, Ivana Daniela; Affinity and distance. On the Newtonian structure of some data kernels; De Gruyter Open Ltd; Analysis and Geometry in Metric Spaces; 6; 1; 2-2018; 89-95
dc.identifier2299-3274
dc.identifierhttp://hdl.handle.net/11336/88699
dc.identifier2299-3274
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4363402
dc.description.abstractLet X be a set. Let K(x, y) > 0 be a measure of the affinity between the data points x and y. We prove that K has the structure of a Newtonian potential K(x, y) = φ(d(x, y)) with φ decreasing and d a quasi-metric on X under two mild conditions on K. The first is that the affinity of each x to itself is infinite and that for x ≠ y the affinity is positive and finite. The second is a quantitative transitivity; if the affinity between x and y is larger than λ > 0 and the affinity of y and z is also larger than λ, then the affinity between x and z is larger than ν(λ). The function ν is concave, increasing, continuous from R+ onto R+ with ν(λ) < λ for every λ >0.
dc.languageeng
dc.publisherDe Gruyter Open Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/agms.2018.6.issue-1/agms-2018-0005/agms-2018-0005.xml
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1515/agms-2018-0005
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAFFINITY KERNEL
dc.subjectMETRIC SPACES
dc.subjectUNIFORM SPACES
dc.titleAffinity and distance. On the Newtonian structure of some data kernels
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución