dc.creatorAmore, Paolo
dc.creatorFernández, Francisco Marcelo
dc.date.accessioned2022-10-06T13:02:20Z
dc.date.accessioned2022-10-15T08:00:16Z
dc.date.available2022-10-06T13:02:20Z
dc.date.available2022-10-15T08:00:16Z
dc.date.created2022-10-06T13:02:20Z
dc.date.issued2021-01
dc.identifierAmore, Paolo; Fernández, Francisco Marcelo; Exceptional points of the eigenvalues of parameter-dependent Hamiltonian operators; Springer; European Physical Journal Plus; 136; 133 ; 1-2021; 1-7
dc.identifier2190-5444
dc.identifierhttp://hdl.handle.net/11336/172183
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4363197
dc.description.abstractWe calculate the exceptional points of the eigenvalues of several parameter-dependent Hamiltonian operators of mathematical and physical interest. We show that the calculation is greatly facilitated by the application of the discriminant to the secular determinant. In this way, the problem reduces to finding the roots of a polynomial function of just one variable, the parameter in the Hamiltonian operator. As illustrative examples, we consider a particle in a one-dimensional box with a polynomial potential, the periodic Mathieu equation, the Stark effect in a polar rigid rotor and in a polar symmetric top.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1140/epjp/s13360-021-01126-3
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1140/epjp/s13360-021-01126-3
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectPARAMETER-DEPENDENT MODELS
dc.subjectEXCEPTIONAL POINTS
dc.subjectSECULAR DETERMINANT
dc.subjectDISCRIMINANT
dc.titleExceptional points of the eigenvalues of parameter-dependent Hamiltonian operators
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución