dc.creatorRuiz Perez, Daniel
dc.creatorLugo Martinez, Jose
dc.creatorBourguignon, Natalia
dc.creatorMathee, Kalai
dc.creatorLerner, Betiana
dc.creatorBar Joseph, Ziv
dc.creatorNarasimhan, Giri
dc.date.accessioned2022-04-13T19:05:44Z
dc.date.accessioned2022-10-15T07:54:06Z
dc.date.available2022-04-13T19:05:44Z
dc.date.available2022-10-15T07:54:06Z
dc.date.created2022-04-13T19:05:44Z
dc.date.issued2021-03-30
dc.identifierRuiz Perez, Daniel; Lugo Martinez, Jose; Bourguignon, Natalia; Mathee, Kalai; Lerner, Betiana; et al.; Dynamic bayesian networks for integrating multi-omics time series microbiome data; American Society for Microbiology; mSystems; 6; 2; 30-3-2021; 1-17
dc.identifier0021-9193
dc.identifierhttp://hdl.handle.net/11336/155252
dc.identifier1098-5530
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4362709
dc.description.abstractA key challenge in the analysis of longitudinal microbiome data is theinference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges,we developed a computational pipeline, a pipeline for the analysis of longitudinalmulti-omics data (PALM), that first aligns multi-omics data and then uses dynamicBayesian networks (DBNs) to reconstruct a unified model. Our approach overcomesdifferences in sampling and progression rates, utilizes a biologically inspired multiomic framework, reduces the large number of entities and parameters in the DBNs,and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novelinteractions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactions
dc.languageeng
dc.publisherAmerican Society for Microbiology
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1128/mSystems.01105-20
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://journals.asm.org/doi/10.1128/mSystems.01105-20
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectLongitudinal microbiome analysis,
dc.subjectMicrobial composition prediction,
dc.subjectDynamic Bayesian networks,
dc.subjectTemporal alignment
dc.subjectMulti-omic integration,
dc.titleDynamic bayesian networks for integrating multi-omics time series microbiome data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución