dc.creatorPlastino, Ángel Luis
dc.creatorRocca, Mario Carlos
dc.date.accessioned2018-11-21T17:30:34Z
dc.date.accessioned2022-10-15T07:48:39Z
dc.date.available2018-11-21T17:30:34Z
dc.date.available2022-10-15T07:48:39Z
dc.date.created2018-11-21T17:30:34Z
dc.date.issued2015-10
dc.identifierPlastino, Ángel Luis; Rocca, Mario Carlos; From the hypergeometric differential equation to a non-linear Schrödinger one; Elsevier Science; Physics Letters A; 379; 42; 10-2015; 2690-2693
dc.identifier0375-9601
dc.identifierhttp://hdl.handle.net/11336/64857
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4362215
dc.description.abstractWe show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre-Rego-Monteiro-Tsallis one.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.physleta.2015.08.015
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960115007392
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectHypergeometric Function
dc.subjectNon-Linear SchrÖDinger Equations
dc.subjectSeparation of Variables
dc.titleFrom the hypergeometric differential equation to a non-linear Schrödinger one
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución