dc.creatorDíaz Varela, José Patricio
dc.creatorLópez Martinolich, Blanca Fernanda
dc.date.accessioned2019-07-16T20:33:07Z
dc.date.accessioned2022-10-15T07:44:04Z
dc.date.available2019-07-16T20:33:07Z
dc.date.available2022-10-15T07:44:04Z
dc.date.created2019-07-16T20:33:07Z
dc.date.issued2011-07
dc.identifierDíaz Varela, José Patricio; López Martinolich, Blanca Fernanda; Resolution of Algebraic Systems of Equations in the Variety of Cyclic Post Algebras; Springer; Studia Logica; 98; 1; 7-2011; 307-330
dc.identifier0039-3215
dc.identifierhttp://hdl.handle.net/11336/79693
dc.identifier1572-8730
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4361798
dc.description.abstractThere is a constructive method to define a structure of simple k-cyclic Post algebra of order p, Lp,k, on a given finite field F(pk), and conversely. There exists an interpretation Φ1 of the variety V(Lp,k) generated by Lp,k into the variety V(F(pk)) generated by F(pk) and an interpretation Φ2 of V(F(pk)) into V(Lp,k) such that Φ2Φ1(B) = B for every B ∈ V(Lp,k) and Φ1Φ2(R) = R for every R ∈ V(F(pk)). In this paper we show how we can solve an algebraic system of equations over an arbitrary cyclic Post algebra of order p, p prime, using the above interpretation, Gröbner bases and algorithms programmed in Maple.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-011-9330-6
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11225-011-9330-6
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectEQUIVALENCE
dc.subjectFINITE FIELDS
dc.subjectGRÖBNER BASES
dc.subjectPOST ALGEBRAS
dc.subjectVARIETIES
dc.titleResolution of Algebraic Systems of Equations in the Variety of Cyclic Post Algebras
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución