dc.creatorCorach, Gustavo
dc.creatorMaestripieri, Alejandra Laura
dc.date.accessioned2020-05-12T19:37:26Z
dc.date.accessioned2022-10-15T07:36:20Z
dc.date.available2020-05-12T19:37:26Z
dc.date.available2022-10-15T07:36:20Z
dc.date.created2020-05-12T19:37:26Z
dc.date.issued2005-09
dc.identifierCorach, Gustavo; Maestripieri, Alejandra Laura; Weighted Generalized Inverses, Oblique Projections, and Least-Squares Problems; Taylor & Francis; Numerical Functional Analysis And Optimization; 26; 6; 9-2005; 659-673
dc.identifier0163-0563
dc.identifierhttp://hdl.handle.net/11336/104942
dc.identifier1532-2467
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4361114
dc.description.abstractA generalization with singular weights of Moore–Penrose generalized inverses of closed range operators in Hilbert spaces is studied using the notion of compatibility of subspaces and positive operators.
dc.languageeng
dc.publisherTaylor & Francis
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/01630560500323083
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01630560500323083
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectWEIGHTED GENERALIZED INVERSES
dc.subjectOBLIQUE PROJECTIONS
dc.subjectLEAST SQUARES
dc.subjectABSTRACT SPLINES
dc.titleWeighted Generalized Inverses, Oblique Projections, and Least-Squares Problems
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución