dc.creatorMendoza, Alberto
dc.creatorRecht, Lázaro
dc.creatorVarela, Alejandro
dc.date.accessioned2020-07-08T20:41:36Z
dc.date.accessioned2022-10-15T07:36:17Z
dc.date.available2020-07-08T20:41:36Z
dc.date.available2022-10-15T07:36:17Z
dc.date.created2020-07-08T20:41:36Z
dc.date.issued2020-01
dc.identifierMendoza, Alberto; Recht, Lázaro; Varela, Alejandro; Supports for minimal hermitian matrices; Elsevier Science Inc; Linear Algebra and its Applications; 584; 1-2020; 458-482
dc.identifier0024-3795
dc.identifierhttp://hdl.handle.net/11336/109133
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4361109
dc.description.abstractWe study certain pairs of subspaces V and W of C^n we call supports that consist of eigenspaces of the eigenvalues ±‖M‖ of a minimal hermitian matrix M(‖M‖ ≤‖M+D‖ for all real diagonals D). For any pair of orthogonal subspaces we define a non negative invariant δ called the adequacy to measure how close they are to form a support and to detect one. This function δ is the minimum of another map F defined in a product of spheres of hermitian matrices. We study the gradient, Hessian and critical points of F in order to approximate δ. These results allow us to prove that the set of supports has interior points in the space of flag manifolds.
dc.languageeng
dc.publisherElsevier Science Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002437951930401X
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.laa.2019.09.018
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectMINIMAL HERMITIAN MATRIX
dc.subjectDIAGONAL MATRICES
dc.subjectFLAG MANIFOLDS
dc.subjectGEOMETRY
dc.titleSupports for minimal hermitian matrices
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución