dc.creatorZitare, Ulises Alejandro
dc.creatorSzuster, Jonathan
dc.creatorScocozza, Magali Franca
dc.creatorEspinoza Cara, Andrés Matías
dc.creatorLeguto, Alcides José
dc.creatorMorgada, Marcos Nicolás
dc.creatorVila, Alejandro Jose
dc.creatorMurgida, Daniel Horacio
dc.date.accessioned2022-02-03T15:06:48Z
dc.date.accessioned2022-10-15T07:28:05Z
dc.date.available2022-02-03T15:06:48Z
dc.date.available2022-10-15T07:28:05Z
dc.date.created2022-02-03T15:06:48Z
dc.date.issued2019-01
dc.identifierZitare, Ulises Alejandro; Szuster, Jonathan; Scocozza, Magali Franca; Espinoza Cara, Andrés Matías; Leguto, Alcides José; et al.; The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 294; 1-2019; 117-125
dc.identifier0013-4686
dc.identifierhttp://hdl.handle.net/11336/151261
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4360387
dc.description.abstractHere we report the effect of molecular crowding on long-range protein electron transfer (ET) and disentangle the specific responses of the redox site and the protein milieu. To this end, we studied two different one-electron redox proteins that share the cupredoxin fold but differ in the metal center, T1 mononuclear blue copper and binuclear CuA, and generated chimeras with hybrid properties by incorporating different T1 centers within the CuA scaffold or by swapping loops between orthologous proteins from different organisms to perturb the CuA site. The heterogeneous ET kinetics of the different proteins was studied by protein film electrochemistry at variable electronic couplings and in the presence of two different crowding agents. The results reveal a strong frictional control of the ET reactions, which for 10 Å tunnelling distances results in a 90% drop of the ET rate when viscosity is matched to that of the mitochondrial interior (ca. 55 cP) by addition of either crowding agent. The effect is ascribed to the dynamical coupling of the metal site and the milieu, which for T1 is found to be twice stronger than for CuA, and the activation energy of protein-solvent motion that is dictated by the overall scaffold. This work highlights the need of explicitly considering molecular crowding effects in protein ET.
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.electacta.2018.10.069
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0013468618323089
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectELECTRON TRANSFER
dc.subjectFRICTIONAL CONTROL
dc.subjectLOOP ENGINEERING
dc.subjectMETALLOPROTEINS
dc.subjectMOLECULAR CROWDING
dc.titleThe role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución