dc.creatorFerreyra, David Eduardo
dc.creatorLevis, Fabián Eduardo
dc.date.accessioned2020-02-12T20:17:52Z
dc.date.accessioned2022-10-15T07:25:35Z
dc.date.available2020-02-12T20:17:52Z
dc.date.available2022-10-15T07:25:35Z
dc.date.created2020-02-12T20:17:52Z
dc.date.issued2017-06
dc.identifierFerreyra, David Eduardo; Levis, Fabián Eduardo; Best Simultaneous Local Approximation in the Lp Norms; Taylor & Francis; Numerical Functional Analysis And Optimization; 38; 6; 6-2017; 770-798
dc.identifier0163-0563
dc.identifierhttp://hdl.handle.net/11336/97345
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4360182
dc.description.abstractWe study the behavior of the best simultaneous approximation to two functions from a convex set in Lp spaces, 2<p<∞, on a finite union of intervals when its measure tends to zero. In particular, we give sufficient conditions over the differentiability of two functions to assure existence of the best simultaneous local approximation from the class of algebraic polynomials of a fixed degree. These conditions are weaker than the ordinary differentiability given in previous works. More precisely, we consider differentiable functions in the sense Lp.
dc.languageeng
dc.publisherTaylor & Francis
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01630563.2017.1291520
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01630563.2017.1291520
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCONVEX SETS
dc.subjectLP SPACES
dc.subjectSIMULTANEOUS APPROXIMATION
dc.titleBest Simultaneous Local Approximation in the Lp Norms
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución