dc.creatorGarcia-Mata, Ignacio
dc.creatorRoncaglia, Augusto Jose
dc.creatorWisniacki, Diego Ariel
dc.date.accessioned2018-12-05T18:35:49Z
dc.date.accessioned2022-10-15T07:10:42Z
dc.date.available2018-12-05T18:35:49Z
dc.date.available2022-10-15T07:10:42Z
dc.date.created2018-12-05T18:35:49Z
dc.date.issued2017-05-12
dc.identifierGarcia-Mata, Ignacio; Roncaglia, Augusto Jose; Wisniacki, Diego Ariel; Quantum-to-classical transition in the work distribution for chaotic systems; American Physical Society; Physical Review E; 95; 5; 12-5-2017; 050102
dc.identifier2470-0053
dc.identifierhttp://hdl.handle.net/11336/65894
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4358970
dc.description.abstractThe work distribution is a fundamental quantity in nonequilibrium thermodynamics mainly due to its connection with fluctuation theorems. Here, we develop a semiclassical approximation to the work distribution for a quench process in chaotic systems that provides a link between the quantum and classical work distributions. The approach is based on the dephasing representation of the quantum Loschmidt echo and on the quantum ergodic conjecture, which states that the Wigner function of a typical eigenstate of a classically chaotic Hamiltonian is equidistributed on the energy shell. Using numerical simulations, we show that our semiclassical approximation accurately describes the quantum distribution as the temperature is increased.
dc.languageeng
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.95.050102
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1103/PhysRevE.95.050102
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectQUANTUM
dc.subjectTHERMODYNAMICS
dc.titleQuantum-to-classical transition in the work distribution for chaotic systems
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución