dc.creator | Fernández, Elsa Adriana | |
dc.creator | Platzeck, Maria Ines | |
dc.date.accessioned | 2019-06-25T12:48:33Z | |
dc.date.accessioned | 2022-10-15T06:35:29Z | |
dc.date.available | 2019-06-25T12:48:33Z | |
dc.date.available | 2022-10-15T06:35:29Z | |
dc.date.created | 2019-06-25T12:48:33Z | |
dc.date.issued | 2002-03-15 | |
dc.identifier | Fernández, Elsa Adriana; Platzeck, Maria Ines; Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner; Academic Press Inc Elsevier Science; Journal of Algebra; 249; 2; 15-3-2002; 326-344 | |
dc.identifier | 0021-8693 | |
dc.identifier | http://hdl.handle.net/11336/78775 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4355924 | |
dc.description.abstract | Let Λ be a finite dimensional algebra over an algebraically closed field such that any oriented cycle in the ordinary quiver of Λ is zero in Λ. We describe the ordinary quiver and relations for T(Λ) = Λ ⋉ D(Λ), the trivial extension of Λ by its minimal injective cogenerator D(Λ), and also for the repetitive algebra Λ of Λ. Associated with this description we give an application of a theorem of Sheila Brenner. | |
dc.language | eng | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869301990568 | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1006/jabr.2001.9056 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Modules | |
dc.subject | Artin Algebras | |
dc.title | Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |