dc.creatorFernández, Elsa Adriana
dc.creatorPlatzeck, Maria Ines
dc.date.accessioned2019-06-25T12:48:33Z
dc.date.accessioned2022-10-15T06:35:29Z
dc.date.available2019-06-25T12:48:33Z
dc.date.available2022-10-15T06:35:29Z
dc.date.created2019-06-25T12:48:33Z
dc.date.issued2002-03-15
dc.identifierFernández, Elsa Adriana; Platzeck, Maria Ines; Presentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner; Academic Press Inc Elsevier Science; Journal of Algebra; 249; 2; 15-3-2002; 326-344
dc.identifier0021-8693
dc.identifierhttp://hdl.handle.net/11336/78775
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4355924
dc.description.abstractLet Λ be a finite dimensional algebra over an algebraically closed field such that any oriented cycle in the ordinary quiver of Λ is zero in Λ. We describe the ordinary quiver and relations for T(Λ) = Λ ⋉ D(Λ), the trivial extension of Λ by its minimal injective cogenerator D(Λ), and also for the repetitive algebra Λ of Λ. Associated with this description we give an application of a theorem of Sheila Brenner.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869301990568
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1006/jabr.2001.9056
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectModules
dc.subjectArtin Algebras
dc.titlePresentations of trivial extensions of finite dimensional algebras and a theorem of Sheila Brenner
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución