dc.creatorCobos, Carlos Jorge
dc.creatorHintzer, K.
dc.creatorSölter, L.
dc.creatorTellbach, E.
dc.creatorMorgenthaler, Annick
dc.creatorTroetsch, Yeicol
dc.date.accessioned2022-10-06T02:46:12Z
dc.date.accessioned2022-10-15T06:33:51Z
dc.date.available2022-10-06T02:46:12Z
dc.date.available2022-10-15T06:33:51Z
dc.date.created2022-10-06T02:46:12Z
dc.date.issued2021-07
dc.identifierCobos, Carlos Jorge; Hintzer, K.; Sölter, L.; Tellbach, E.; Morgenthaler, Annick; et al.; High-Temperature Fluorocarbon Chemistry Revisited; American Chemical Society; Journal of Physical Chemistry A; 125; 25; 7-2021; 5626-5632
dc.identifier1089-5639
dc.identifierhttp://hdl.handle.net/11336/172103
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4355786
dc.description.abstractThe thermal dissociation reactions of C2F4and C2F6were studied in shock waves over the temperature range 1000-4000 K using UV absorption spectroscopy. Absorption cross sections of C2F4, CF2, CF, and C2were derived and related to quantum-chemically modeled oscillator strengths. After confirming earlier results for the dissociation rates of C2F4, CF3, and CF2, the kinetics of secondary reactions were investigated. For example, the reaction CF2+ CF2→ CF + CF3was identified. Its rate constant of 1010cm3mol-1s-1near 2400 K is markedly larger than the limiting high-pressure rate constant of the dimerization CF2+ CF2→ C2F4, suggesting that the reaction follows a different path. When the measurements of the thermal dissociation CF2(+Ar) → CF + F (+Ar) are extended to temperatures above 2500 K, the formation of C2radicals was shown to involve the reaction CF + CF → C2F + F (modeled rate constant 8.0 × 1012(T/3500 K)1.0exp(−4400 K/T) cm3mol-1s-1) and the subsequent dissociation C2F (+Ar) → C2+ F + (Ar) (modeled limiting low-pressure rate constant 3.0 × 1016(T/3500 K)−4.0exp(−56880 K/T) cm3mol-1s-1). This mechanism was validated by monitoring the dissociation of C2at temperatures close to 4000 K. Temperature- and pressure-dependences of rate constants of reactions involved in the system were modeled by quantum-chemistry based rate theory.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1021/acs.jpca.1c03654
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpca.1c03654
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectHigh-Temperature
dc.subjectFluorocarbon
dc.titleHigh-Temperature Fluorocarbon Chemistry Revisited
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución