dc.creatorCagliero, Leandro Roberto
dc.creatorSzechtman, Fernando
dc.date.accessioned2020-12-01T20:18:41Z
dc.date.accessioned2022-10-15T06:31:13Z
dc.date.available2020-12-01T20:18:41Z
dc.date.available2022-10-15T06:31:13Z
dc.date.created2020-12-01T20:18:41Z
dc.date.issued2019-06
dc.identifierCagliero, Leandro Roberto; Szechtman, Fernando; Jordan-Chevalley decomposition in lie algebras; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 62; 2; 6-2019; 349-354
dc.identifier0008-4395
dc.identifierhttp://hdl.handle.net/11336/119499
dc.identifier1496-4287
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4355556
dc.description.abstractWe prove that if is a solvable Lie algebra of matrices over a field of characteristic § and A∈s, then the semisimple and nilpotent summands of the Jordan-Chevalley decomposition of A belong to s if and only if there exist S, N ∈ s , is semisimple, is N ilpotent (not necessarily [S,N]=0) such that A= S + N.
dc.languageeng
dc.publisherCanadian Mathematical Soc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4153/CMB-2018-023-7
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/jordanchevalley-decomposition-in-lie-algebras/CCF61625B61266406372E0D9376EBB5D
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectJORDAN-CHEVALLEY DECOMPOSITION
dc.subjectREPRESENTATION
dc.subjectSOLVABLE LIE ALGEBRA
dc.titleJordan-Chevalley decomposition in lie algebras
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución