dc.creatorAndruchow, Esteban
dc.creatorLarotonda, Gabriel Andrés
dc.date.accessioned2019-12-27T03:58:08Z
dc.date.accessioned2022-10-15T06:29:40Z
dc.date.available2019-12-27T03:58:08Z
dc.date.available2022-10-15T06:29:40Z
dc.date.created2019-12-27T03:58:08Z
dc.date.issued2009-03
dc.identifierAndruchow, Esteban; Larotonda, Gabriel Andrés; Lagrangian Grassmannian in infinite dimension; Elsevier Science; Journal Of Geometry And Physics; 59; 3; 3-2009; 306-320
dc.identifier0393-0440
dc.identifierhttp://hdl.handle.net/11336/93033
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4355422
dc.description.abstractGiven a complex structure J on a real (finite or infinite dimensional) Hilbert space H, we study the geometry of the Lagrangian Grassmannian Λ (H) of H, i.e. the set of closed linear subspaces L ⊂ H such that J (L) = L⊥. The complex unitary group U (HJ), consisting of the elements of the orthogonal group of H which are complex linear for the given complex structure, acts transitively on Λ (H) and induces a natural linear connection in Λ (H). It is shown that any pair of Lagrangian subspaces can be joined by a geodesic of this connection. A Finsler metric can also be introduced, if one regards subspaces L as projections pL (=the orthogonal projection onto L) or symmetries ε{lunate}L = 2 pL - I, namely measuring tangent vectors with the operator norm. We show that for this metric the Hopf-Rinow theorem is valid in Λ (H): a geodesic joining a pair of Lagrangian subspaces can be chosen to be of minimal length. A similar result holds for the unitary orbit of a Lagrangian subspace under the action of the k-Schatten unitary group (2 ≤ k ≤ ∞), with the Finsler metric given by the k-norm.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S039304400800185X
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.geomphys.2008.11.004
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2270
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectANALYSIS ON MANIFOLDS
dc.subjectCOMPLEX STRUCTURE
dc.subjectGLOBAL ANALYSIS
dc.subjectLAGRANGIAN SUBSPACE
dc.subjectREAL AND COMPLEX DIFFERENTIAL GEOMETRY
dc.subjectSHORT GEODESIC
dc.subjectSYMPLECTIC GEOMETRY
dc.titleLagrangian Grassmannian in infinite dimension
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución