dc.creatorForzani, Liliana Maria
dc.creatorMartín-Reyes, F.J.
dc.creatorOmbrosi, Sheldy Javier
dc.date.accessioned2019-07-15T18:51:09Z
dc.date.accessioned2022-10-15T06:29:37Z
dc.date.available2019-07-15T18:51:09Z
dc.date.available2022-10-15T06:29:37Z
dc.date.created2019-07-15T18:51:09Z
dc.date.issued2011-04
dc.identifierForzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier; Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function; American Mathematical Society; Transactions Of The American Mathematical Society; 363; 4; 4-2011; 1699-1719
dc.identifier0002-9947
dc.identifierhttp://hdl.handle.net/11336/79566
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4355417
dc.description.abstractIn this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.
dc.languageeng
dc.publisherAmerican Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2011-363-04/S0002-9947-2010-05343-7/
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/S0002-9947-2010-05343-7
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectERGODIC MAXIMAL THEOREM
dc.subjectONE-SIDED MAXIMAL FUNCTION
dc.subjectWEIGHTS
dc.titleWeighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución