dc.creator | Lerner, Andrei K. | |
dc.creator | Ombrosi, Sheldy Javier | |
dc.date.accessioned | 2018-12-11T17:12:28Z | |
dc.date.accessioned | 2022-10-15T06:14:32Z | |
dc.date.available | 2018-12-11T17:12:28Z | |
dc.date.available | 2022-10-15T06:14:32Z | |
dc.date.created | 2018-12-11T17:12:28Z | |
dc.date.issued | 2012-05 | |
dc.identifier | Lerner, Andrei K.; Ombrosi, Sheldy Javier; An extrapolation theorem with applications to weighted estimates for singular integrals; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 10; 5-2012; 4475-4487 | |
dc.identifier | 0022-1236 | |
dc.identifier | http://hdl.handle.net/11336/66250 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4354063 | |
dc.description.abstract | We prove an extrapolation theorem saying that the weighted weak type (1; 1) inequality for A1 weights implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M. The weak Muchkenhoupt-Wheeden conjecture along with this result allows us to conjecture that the following estimate holds for a Calder´on-Zygmund operator T for any p > 1: ∥T∥ Lp(w) ≤ c∥M∥p Lp(w): The latter conjecture would yield the sharp estimates for ∥T∥ Lp(w) in terms of the Aq characteristic of w for any 1 < q < p. In this paper we get a weaker inequality ∥T∥ Lp(w) ≤ c∥M∥p Lp(w) log(1 + ∥M∥ Lp(w)) with the corresponding estimates for ∥w∥Aq when 1 < q < p. | |
dc.language | eng | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123612001000 | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jfa.2012.02.025 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | EXTRAPOLATION | |
dc.subject | INTEGRALS | |
dc.subject | WEIGHTS | |
dc.title | An extrapolation theorem with applications to weighted estimates for singular integrals | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |