dc.creatorLerner, Andrei K.
dc.creatorOmbrosi, Sheldy Javier
dc.date.accessioned2018-12-11T17:12:28Z
dc.date.accessioned2022-10-15T06:14:32Z
dc.date.available2018-12-11T17:12:28Z
dc.date.available2022-10-15T06:14:32Z
dc.date.created2018-12-11T17:12:28Z
dc.date.issued2012-05
dc.identifierLerner, Andrei K.; Ombrosi, Sheldy Javier; An extrapolation theorem with applications to weighted estimates for singular integrals; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 10; 5-2012; 4475-4487
dc.identifier0022-1236
dc.identifierhttp://hdl.handle.net/11336/66250
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4354063
dc.description.abstractWe prove an extrapolation theorem saying that the weighted weak type (1; 1) inequality for A1 weights implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M. The weak Muchkenhoupt-Wheeden conjecture along with this result allows us to conjecture that the following estimate holds for a Calder´on-Zygmund operator T for any p > 1: ∥T∥ Lp(w) ≤ c∥M∥p Lp(w): The latter conjecture would yield the sharp estimates for ∥T∥ Lp(w) in terms of the Aq characteristic of w for any 1 < q < p. In this paper we get a weaker inequality ∥T∥ Lp(w) ≤ c∥M∥p Lp(w) log(1 + ∥M∥ Lp(w)) with the corresponding estimates for ∥w∥Aq when 1 < q < p.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123612001000
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jfa.2012.02.025
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectEXTRAPOLATION
dc.subjectINTEGRALS
dc.subjectWEIGHTS
dc.titleAn extrapolation theorem with applications to weighted estimates for singular integrals
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución