dc.creatorBonomo, Flavia
dc.creatorBrešar, Boštjan
dc.creatorGrippo, Luciano Norberto
dc.creatorMilanič, Martin
dc.creatorSafe, Martin Dario
dc.date.accessioned2020-02-10T15:35:54Z
dc.date.accessioned2022-10-15T06:13:52Z
dc.date.available2020-02-10T15:35:54Z
dc.date.available2022-10-15T06:13:52Z
dc.date.created2020-02-10T15:35:54Z
dc.date.issued2018-01
dc.identifierBonomo, Flavia; Brešar, Boštjan; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario; Domination parameters with number 2: Interrelations and algorithmic consequences; Elsevier Science; Discrete Applied Mathematics; 235; 1-2018; 23-50
dc.identifier0166-218X
dc.identifierhttp://hdl.handle.net/11336/97057
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4353994
dc.description.abstractIn this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X17304031
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.dam.2017.08.017
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1511.00410
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject2-DOMINATION
dc.subjectAPPROXIMATION ALGORITHM
dc.subjectDOUBLE DOMINATION
dc.subjectGRAPH DOMINATION
dc.subjectINAPPROXIMABILITY
dc.subjectINTEGER DOMINATION
dc.subjectRAINBOW DOMINATION
dc.subjectSPLIT GRAPH
dc.subjectTOTAL DOMINATION
dc.titleDomination parameters with number 2: Interrelations and algorithmic consequences
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución