dc.creatorGroisman, Pablo Jose
dc.date.accessioned2022-02-04T01:56:54Z
dc.date.accessioned2022-10-15T06:12:14Z
dc.date.available2022-02-04T01:56:54Z
dc.date.available2022-10-15T06:12:14Z
dc.date.created2022-02-04T01:56:54Z
dc.date.issued2006-12
dc.identifierGroisman, Pablo Jose; Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions; Springer Wien; Computing; 76; 3-4; 12-2006; 325-352
dc.identifier0010-485X
dc.identifierhttp://hdl.handle.net/11336/151321
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4353827
dc.description.abstractThe equation u t =Δu+u p with homogeneous Dirichlet boundary conditions has solutions with blow-up if p>1. An adaptive time-step procedure is given to reproduce the asymptotic behavior of the solutions in the numerical approximations. We prove that the numerical methods reproduce the blow-up cases, the blow-up rate and the blow-up time. We also localize the numerical blow-up set.
dc.languageeng
dc.publisherSpringer Wien
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00607-005-0136-0
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00607-005-0136-0
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectADAPTIVE NUMERICAL SCHEME
dc.subjectASYMPTOTIC BEHAVIOR
dc.subjectBLOW-UP
dc.titleTotally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución