dc.creator | Groisman, Pablo Jose | |
dc.date.accessioned | 2022-02-04T01:56:54Z | |
dc.date.accessioned | 2022-10-15T06:12:14Z | |
dc.date.available | 2022-02-04T01:56:54Z | |
dc.date.available | 2022-10-15T06:12:14Z | |
dc.date.created | 2022-02-04T01:56:54Z | |
dc.date.issued | 2006-12 | |
dc.identifier | Groisman, Pablo Jose; Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions; Springer Wien; Computing; 76; 3-4; 12-2006; 325-352 | |
dc.identifier | 0010-485X | |
dc.identifier | http://hdl.handle.net/11336/151321 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4353827 | |
dc.description.abstract | The equation u t =Δu+u p with homogeneous Dirichlet boundary conditions has solutions with blow-up if p>1. An adaptive time-step procedure is given to reproduce the asymptotic behavior of the solutions in the numerical approximations. We prove that the numerical methods reproduce the blow-up cases, the blow-up rate and the blow-up time. We also localize the numerical blow-up set. | |
dc.language | eng | |
dc.publisher | Springer Wien | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00607-005-0136-0 | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00607-005-0136-0 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | ADAPTIVE NUMERICAL SCHEME | |
dc.subject | ASYMPTOTIC BEHAVIOR | |
dc.subject | BLOW-UP | |
dc.title | Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |