dc.creatorDeniz, Nestor Nahuel
dc.creatorMurillo, Marina Hebe
dc.creatorSanchez, Guido Marcelo
dc.creatorGenzelis, Lucas Manuel
dc.creatorGiovanini, Leonardo Luis
dc.date.accessioned2020-07-05T15:38:29Z
dc.date.accessioned2022-10-15T06:09:34Z
dc.date.available2020-07-05T15:38:29Z
dc.date.available2022-10-15T06:09:34Z
dc.date.created2020-07-05T15:38:29Z
dc.date.issued2019-06
dc.identifierDeniz, Nestor Nahuel; Murillo, Marina Hebe; Sanchez, Guido Marcelo; Genzelis, Lucas Manuel; Giovanini, Leonardo Luis; Multiple model approach for robust state estimation in presence of model uncertainty and bounded disturbances; Cornell University; arXiv; 6-2019
dc.identifier2331-8422
dc.identifierhttp://hdl.handle.net/11336/108835
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4353596
dc.description.abstractIn the present work, an optimization-based algorithm for state estimation under model uncertainty and bounded disturbances is presented. In order to avoid to solve a non-convex optimization problem, model and state estimation problems are divided into two convex formulations which are solved within a fixed-point iteration scheme with standard available solvers. Guaranty of robust global stability is given for the case of bounded disturbances and uncertainty, and convergence to the true system and vector state are given for the case of vanishing disturbances.
dc.languageeng
dc.publisherCornell University
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.10040
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMULTIPLE MODEL ADAPTIVE CONTROL
dc.subjectMOVING HORIZON ESTIMATION
dc.subjectROBUST STABILITY
dc.subjectNONLINEAR SYSTEMS
dc.titleMultiple model approach for robust state estimation in presence of model uncertainty and bounded disturbances
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución