dc.creatorde Napoli, Pablo Luis
dc.creatorHaddad, Julián Eduardo
dc.creatorJiménez, Carlos Hugo
dc.creatorMontenegro, Marcos
dc.date.accessioned2019-11-12T14:15:00Z
dc.date.accessioned2022-10-15T06:02:19Z
dc.date.available2019-11-12T14:15:00Z
dc.date.available2022-10-15T06:02:19Z
dc.date.created2019-11-12T14:15:00Z
dc.date.issued2018-02
dc.identifierde Napoli, Pablo Luis; Haddad, Julián Eduardo; Jiménez, Carlos Hugo; Montenegro, Marcos; The sharp affine L 2 Sobolev trace inequality and variants; Springer; Mathematische Annalen; 370; 1-2; 2-2018; 287-308
dc.identifier0025-5831
dc.identifierhttp://hdl.handle.net/11336/88595
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4352954
dc.description.abstractWe establish a sharp affineL p Sobolev trace inequality by using the L p Busemann–Petty centroid inequality. For p= 2 , our affine version is stronger than the famous sharp L 2 Sobolev trace inequality proved independently by Escobar and Beckner. Our approach allows also to characterize all extremizers in this case. For this new inequality, no Euclidean geometric structure is needed.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00208-017-1548-9
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00208-017-1548-9
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject51M16
dc.subjectPRIMARY 46E35
dc.subjectSECONDARY 46E39
dc.titleThe sharp affine L 2 Sobolev trace inequality and variants
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución