dc.creatorDa Silva, Joao Vitor
dc.creatorRossi, Julio Daniel
dc.creatorSalort, Ariel Martin
dc.date.accessioned2019-11-25T20:20:16Z
dc.date.accessioned2022-10-15T06:02:12Z
dc.date.available2019-11-25T20:20:16Z
dc.date.available2022-10-15T06:02:12Z
dc.date.created2019-11-25T20:20:16Z
dc.date.issued2018-01
dc.identifierDa Silva, Joao Vitor; Rossi, Julio Daniel; Salort, Ariel Martin; Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues; Texas State University, Department of Mathematics; Electronic Journal of Differential Equations; 2018; 7; 1-2018; 1-9
dc.identifier1072-6691
dc.identifierhttp://hdl.handle.net/11336/89737
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4352946
dc.description.abstractIn this note we analyze how perturbations of a ball Br ⊂ Rn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞−eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenvalues close to the ones for the ball of the same volume Br. In fact, we show that, if |λ D 1,∞(Ω) − λ D 1,∞(Br)| = δ1 and |λ N 1,∞(Ω) − λ N 1,∞(Br)| = δ2, then there are two balls such that B r δ1r+1 ⊂ Ω ⊂ B r+δ2r 1−δ2r . In addition, we also obtain a result concerning stability of the Dirichlet ∞−eigenfunctions.
dc.languageeng
dc.publisherTexas State University, Department of Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2018/07/abstr.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject∞−eigenvalues estimates
dc.subject∞−eigenvalue problem
dc.subjectapproximation of domains
dc.titleUniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución