dc.creatorRossit, Daniel Alejandro
dc.creatorTohmé, Fernando Abel
dc.date.accessioned2022-08-12T18:04:02Z
dc.date.accessioned2022-10-15T05:56:13Z
dc.date.available2022-08-12T18:04:02Z
dc.date.available2022-10-15T05:56:13Z
dc.date.created2022-08-12T18:04:02Z
dc.date.issued2022-01-10
dc.identifierRossit, Daniel Alejandro; Tohmé, Fernando Abel; Knowledge representation in Industry 4.0 Scheduling problems; Taylor & Francis Ltd; International Journal Of Computer Integrated Manufacturing; 2022; 10-1-2022; 5-25
dc.identifier0951-192X
dc.identifierhttp://hdl.handle.net/11336/165422
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4352306
dc.description.abstractIndustry 4.0 raises the need for a closer integration of management systems in manufacturing companies. Such process is driven by Cyber-Physical Systems (CPS) and the Internet of Things (IoT). Starting from the potential of these technologies, a knowledge architecture aimed at addressing scheduling problems is proposed. Scheduling-support systems generally do not solve real-world scheduling problems, being instead only capable of solving simplified versions, producing solutions that human schedulers adapt to real problems. The architecture aims to record and consolidate the empirical knowledge generated by the solutions of actual scheduling problems. In this way, it summarizes the implicit criteria used by human schedulers. The architecture presented here records this knowledge in data structures compatible with the structure of scheduling problems. In further iterations this knowledge crystallizes into a sound and smart structure.
dc.languageeng
dc.publisherTaylor & Francis Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/action/journalInformation?journalCode=tcim20
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1080/0951192X.2021.2022760
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCYBER-PHYSICAL SYSTEMS
dc.subjectINDUSTRY 4.0
dc.subjectSCHEDULING
dc.subjectDECISIONAL DNA
dc.subjectKNOWLEDGE REPRESENTATION
dc.titleKnowledge representation in Industry 4.0 Scheduling problems
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución