dc.creatorAndruchow, Esteban
dc.creatorChiumiento, Eduardo Hernan
dc.creatorLarotonda, Gabriel Andrés
dc.date.accessioned2019-10-28T20:31:35Z
dc.date.accessioned2022-10-15T05:55:36Z
dc.date.available2019-10-28T20:31:35Z
dc.date.available2022-10-15T05:55:36Z
dc.date.created2019-10-28T20:31:35Z
dc.date.issued2018-07
dc.identifierAndruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; Geometric significance of Toeplitz kernels; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 275; 2; 7-2018; 329-355
dc.identifier0022-1236
dc.identifierhttp://hdl.handle.net/11336/87432
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4352236
dc.description.abstractLet L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds associated to p-Schatten ideals and essentially commuting projections.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123618300831
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfa.2018.02.015
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1608.05737
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectGEODESIC
dc.subjectSATO GRASSMANNIAN
dc.subjectSCHATTEN IDEAL
dc.subjectTOEPLITZ OPERATOR
dc.titleGeometric significance of Toeplitz kernels
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución