dc.creatorBollati, Julieta
dc.creatorGariboldi, Claudia Maricel
dc.creatorTarzia, Domingo Alberto
dc.date.accessioned2022-04-01T20:59:27Z
dc.date.accessioned2022-10-15T05:33:02Z
dc.date.available2022-04-01T20:59:27Z
dc.date.available2022-10-15T05:33:02Z
dc.date.created2022-04-01T20:59:27Z
dc.date.issued2020-10
dc.identifierBollati, Julieta; Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems; Springer Verlag Berlín; Journal of Applied Mathematics and Computing; 64; 10-2020; 283-311
dc.identifier1598-5865
dc.identifierhttp://hdl.handle.net/11336/154219
dc.identifier1865-2085
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4350201
dc.description.abstractWe consider a steady-state heat conduction problem in a multidimensional bounded domainfor the Poisson equation with constant internal energy g and mixed boundary conditions given by a constant temperature b in the portion 1 of the boundary and a constant heat flux q in the remaining portion2 of the boundary.Moreover, we consider a family of steady-state heat conduction problems with a convective condition on the boundary 1 with heat transfer coefficient α and external temperature b. We obtain explicitly, for a rectangular domain in R2, an annulus in R2 and a spherical shell in R3, the optimal controls, the system states and adjoint states for the following optimal control problems: a distributed control problem on the internal energy g, a boundary optimal control problem on the heat flux q, a boundary optimal control problem on the external temperature b and a distributed-boundary simultaneous optimal control problem on the source g and the flux q. These explicit solutions can be used for testing new numerical methods as a benchmark test. In agreement with theory, it is proved that the system state, adjoint state, optimal controls and optimal values corresponding to the problem with a convective condition on 1 converge, when α → ∞, to the corresponding system state, adjoint state, optimal controls and optimal values that arise from the problem with a temperature condition on 1. Also, we analyze the order of convergence in each case, which turns out to be 1/α being new for these kind of elliptic optimal control problems.
dc.languageeng
dc.publisherSpringer Verlag Berlín
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s12190-020-01355-2
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12190-020-01355-2
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1902.09261
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectELLIPTIC VARIATIONAL INEQUALITIES
dc.subjectDISTRIBUTED AND BOUNDARY OPTIMAL CONTROL PROBLEMS
dc.subjectMIXED BOUNDARY CONDITIONS
dc.subjectEXPLICIT SOLUTIONS
dc.subjectOPTIMALITY CONDITIONS
dc.titleExplicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución