dc.creatorAlmiñana Reinoso, Federico Gabriel
dc.creatorPelaitay, Gustavo Andrés
dc.date.accessioned2022-02-09T15:54:40Z
dc.date.accessioned2022-10-15T05:29:11Z
dc.date.available2022-02-09T15:54:40Z
dc.date.available2022-10-15T05:29:11Z
dc.date.created2022-02-09T15:54:40Z
dc.date.issued2020-08
dc.identifierAlmiñana Reinoso, Federico Gabriel; Pelaitay, Gustavo Andrés; A Topological Duality for k x j-rough Heyting Algebras; Old City Publishing Inc; Journal of Multiple-Valued Logic and Soft Computing; 35; 3/4; 8-2020; 307-323
dc.identifier1542-3999
dc.identifierhttp://hdl.handle.net/11336/151675
dc.identifier1542-3980
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4349838
dc.description.abstractk-rough Heyting algebras were introduced by Eric San Juan as an algebraic formalism for reasoning on finite increasing sequences over Boolean algebras in general and on generalizations of rough set concepts in particular. In this paper, k × j-rough Heyting algebras are defined and investigated. These algebras constitute an extension of Heyting algebras and in j = 2 case they coincide with k-rough Heyting algebras. The aim of this paper is to give a topological study for these new class of algebras.
dc.languageeng
dc.publisherOld City Publishing Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-35-number-3-4-2020/mvlsc-35-3-4-p-307-323/
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectHEYTING ALGEBRAS
dc.subjectT-ROUGH HEYTING ALGEBRAS
dc.subjectK X J-ROUGH HEYTING ALGEBRAS
dc.subjectROUGH SET
dc.subjectTOPOLOGICAL DUALITY
dc.subjectPRIESTLEY DUALITY
dc.titleA Topological Duality for k x j-rough Heyting Algebras
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución