dc.creatorAntezana, Jorge Abel
dc.creatorPujals, Enrique
dc.creatorStojanoff, Demetrio
dc.date.accessioned2019-11-11T15:10:16Z
dc.date.accessioned2022-10-15T05:19:20Z
dc.date.available2019-11-11T15:10:16Z
dc.date.available2022-10-15T05:19:20Z
dc.date.created2019-11-11T15:10:16Z
dc.date.issued2011-01
dc.identifierAntezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; The iterated Aluthge transforms of a matrix converge; Academic Press Inc Elsevier Science; Advances in Mathematics; 226; 2; 1-2011; 1591-1620
dc.identifier0001-8708
dc.identifierhttp://hdl.handle.net/11336/88443
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4348999
dc.description.abstractGiven an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by. Δ(T)=|T|1/2U|T|1/2. Let Δn(T) denote the n-times iterated Aluthge transform of T, i.e., Δ0(T)=T and Δn(T)=Δ(Δn-1(T)), nεN. We prove that the sequence {Δn(T)}nεN converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870810003166
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aim.2010.08.012
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/0711.3727.pdf
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectALUTHGE TRANSFORM
dc.subjectPOLAR DECOMPOSITION
dc.subjectPRIMARY
dc.subjectSECONDARY
dc.subjectSIMILARITY ORBIT
dc.subjectSTABLE MANIFOLD THEOREM
dc.titleThe iterated Aluthge transforms of a matrix converge
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución