dc.creatorCholaquidis, Alejandro
dc.creatorForzani, Liliana Maria
dc.creatorLlop Orzan, Pamela Nerina
dc.creatorMoreno, Leonardo
dc.date.accessioned2018-12-06T18:28:02Z
dc.date.accessioned2022-10-15T05:16:19Z
dc.date.available2018-12-06T18:28:02Z
dc.date.available2022-10-15T05:16:19Z
dc.date.created2018-12-06T18:28:02Z
dc.date.issued2017-01
dc.identifierCholaquidis, Alejandro; Forzani, Liliana Maria; Llop Orzan, Pamela Nerina; Moreno, Leonardo; On the classification problem for Poisson point processes; Elsevier Inc; Journal Of Multivariate Analysis; 153; 1-2017; 1-15
dc.identifier0047-259X
dc.identifierhttp://hdl.handle.net/11336/66016
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4348742
dc.description.abstractFor Poisson processes taking values in a general metric space, we tackle the problem of supervised classification in two different ways: via the classical k-nearest neighbor rule, by introducing suitable distances between patterns of points; and via the Bayes rule, by nonparametrically estimating the intensity function of the process. In the first approach we prove that under the separability of the space, the rule turns out to be consistent. In the second case, we prove the consistency of the rule by proving the consistency of the estimated intensities. Both classifiers are shown to behave well under departures from the Poisson distribution.
dc.languageeng
dc.publisherElsevier Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.jmva.2016.09.002
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X16300859
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCLASSIFICATION
dc.subjectNONPARAMETRIC ESTIMATION
dc.subjectPOINT PROCESS
dc.subjectPOISSON PROCESS
dc.titleOn the classification problem for Poisson point processes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución