dc.contributorBetsch, Peter
dc.creatorArnold, Martín Alejandro
dc.creatorCardona, Alberto
dc.creatorBrüls, Olivier
dc.date.accessioned2020-06-24T15:26:48Z
dc.date.accessioned2022-10-15T05:14:31Z
dc.date.available2020-06-24T15:26:48Z
dc.date.available2022-10-15T05:14:31Z
dc.date.created2020-06-24T15:26:48Z
dc.date.issued2016
dc.identifierArnold, Martín Alejandro; Cardona, Alberto; Brüls, Olivier; A Lie algebra approach to Lie group time integration of constrained systems; Springer International Publishing; 565; 2016; 91-158
dc.identifier978-3-319-31877-6
dc.identifierhttp://hdl.handle.net/11336/108097
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4348588
dc.description.abstractLie group integrators preserve by construction the Lie group structure of a nonlinear configuration space. In multibody dynamics, they support a representation of (large) rotations in a Lie group setting that is free of singularities. The resulting equations of motion are differential equations on a manifold with tangent space being parametrized by the corresponding Lie algebra. In the present paper, we discuss the time discretization of these equations of motion by a generalized-α Lie group integrator for constrained systems and show how to exploit in this context the linear structure of the Lie algebra. This linear structure allows a very natural definition of the generalized-α Lie group integrator, an efficient practical implementation and a very detailed error analysis. Furthermore, the Lie algebra approach may be combined with analytical transformations that help to avoid an undesired order reduction phenomenon in generalized-α time integration. After a tutorial-like step by-step introduction to the generalized-α Lie group integrator, we investigate its convergence behaviour and develop a novel initialization scheme to achieve second order accuracy in the application to constrained systems. The theoretical results are illustrated by a comprehensive set of numerical tests for two Lie group formulations of a rotating heavy top.
dc.languageeng
dc.publisherSpringer International Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-31879-0_3
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-31879-0_3
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceStructure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics
dc.subjectLIE GROUP INTEGRATORS
dc.titleA Lie algebra approach to Lie group time integration of constrained systems
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/bookPart
dc.typeinfo:ar-repo/semantics/parte de libro


Este ítem pertenece a la siguiente institución