dc.creatorCalderón, Pablo Luis
dc.creatorRios, Noelia Belén
dc.creatorRuiz, Mariano Andres
dc.date.accessioned2020-12-09T14:03:27Z
dc.date.accessioned2022-10-15T05:13:55Z
dc.date.available2020-12-09T14:03:27Z
dc.date.available2022-10-15T05:13:55Z
dc.date.created2020-12-09T14:03:27Z
dc.date.issued2020-05
dc.identifierCalderón, Pablo Luis; Rios, Noelia Belén; Ruiz, Mariano Andres; Local extrema for Procrustes problems in the set of positive definite matrices; Elsevier Science Inc; Linear Algebra and its Applications; 602; 5-2020; 252-263
dc.identifier0024-3795
dc.identifierhttp://hdl.handle.net/11336/119952
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4348529
dc.description.abstractGiven two positive definite matrices A and B, a well known result by Gelfand, Naimark and Lidskii establishes a relationship between the eigenvalues of A and B and those of AB by means of majorization inequalities. In this work we make a local study focused in the spectrum of the matrices that achieve the equality in those inequalities. As an application, we complete some previous results concerning Procustes problems for unitarily invariant norms in the manifold of positive definite matrices.
dc.languageeng
dc.publisherElsevier Science Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.laa.2020.05.021
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379520302597?via%3Dihub
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectMATRIX APPROXIMATION
dc.subjectLIDSKII INEQUALITIES
dc.subjectPROCRUSTES PROBLEMS
dc.titleLocal extrema for Procrustes problems in the set of positive definite matrices
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución