dc.creatorPoggi, Facundo Sebastian
dc.creatorSasyk, Roman
dc.date.accessioned2020-06-03T19:18:44Z
dc.date.accessioned2022-10-15T05:05:54Z
dc.date.available2020-06-03T19:18:44Z
dc.date.available2022-10-15T05:05:54Z
dc.date.created2020-06-03T19:18:44Z
dc.date.issued2019-05
dc.identifierPoggi, Facundo Sebastian; Sasyk, Roman; An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups; Mashhad Tusi Mathematical Research Group; Advances in Operator Theory; 4; 4; 5-2019; 852-864
dc.identifier2538-225X
dc.identifierhttp://hdl.handle.net/11336/106621
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4347988
dc.description.abstractUsing ultrapowers of C-algebras, we provide a new construction of the multiplier algebra of a C-algebra. This extends the work of Avsec and Goldbring [Houston J. Math., to appear, arXiv:1610.09276] to the setting ofnoncommutative and nonseparable C-algebras. We also extend their work to give a new proof of the fact that groups acting transitively on locally finite trees with boundary amenable stabilizers are boundary amenable.
dc.languageeng
dc.publisherMashhad Tusi Mathematical Research Group
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.15352/aot.1904-1501
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.aot/1557885618
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMULTIPLIER ALGEBRA
dc.subjectULTRAPRODUCT OF C* ALGEBRAS
dc.subjectBOUNDARY AMENABLE GROUP
dc.titleAn ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución