Argentina | info:eu-repo/semantics/article
dc.creatorVargas, Jose Marcelo
dc.creatorGomez, Javier Enrique
dc.creatorAviles Felix, Luis Steven
dc.creatorButera, Alejandro Ricardo
dc.date.accessioned2019-05-09T21:36:13Z
dc.date.accessioned2022-10-15T04:57:20Z
dc.date.available2019-05-09T21:36:13Z
dc.date.available2022-10-15T04:57:20Z
dc.date.created2019-05-09T21:36:13Z
dc.date.issued2017-05-09
dc.identifierVargas, Jose Marcelo; Gomez, Javier Enrique; Aviles Felix, Luis Steven; Butera, Alejandro Ricardo; Magnetoelectric tuning of the inverse spin-Hall effect; American Institute of Physics; AIP Advances; 7; 5; 9-5-2017; 55911-55914
dc.identifier2158-3226
dc.identifierhttp://hdl.handle.net/11336/76014
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4347286
dc.description.abstractWe demonstrate in this article that the magnetoelectric (ME) mechanism can be exploited to control the spin current emitted in a spin pumping experiment using moderate electric fields. Spin currents were generated at the interface of a ferromagnet/metal bilayer by driving the system to the ferromagnetic resonance condition at X-Band (9.78 GHz) with an incident power of 200 mW. The ME structure, a thin (20 nm) FePt film grown on top of a polished 011-cut single crystal lead magnesium niobate-lead titanate (PMN-PT) slab, was prepared by dc magnetron sputtering. The PMN-PT/FePt was operated in the L-T mode (longitudinal magnetized-transverse polarized). This hybrid composite showed a large ME coefficient of 140 Oe cm/kV, allowing to easily tune the ferromagnetic resonance condition with electric field strengths below 4 kV/cm. A thin layer of Pt (10 nm) was grown on top of the PMN-PT/FePt structure and was used to generate and detect the spin current by taking advantage of its large spin-orbit coupling that produces a measurable signal via the inverse spin-Hall effect. These results proved an alternative way to tune the magnetic field at which the spin current is established and consequently the inverse spin-Hall effect signal, which can promote advances in hybrid spintronic devices.
dc.languageeng
dc.publisherAmerican Institute of Physics
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.4973845
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4973845
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectInverse spin hall effect
dc.subjectMagnetoelectric tuning
dc.subjectFerromagnetic resonance
dc.titleMagnetoelectric tuning of the inverse spin-Hall effect
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución