dc.creator | Fernandez Bonder, Julian | |
dc.creator | Salort, Ariel Martin | |
dc.date.accessioned | 2021-07-26T12:57:52Z | |
dc.date.accessioned | 2022-10-15T04:51:56Z | |
dc.date.available | 2021-07-26T12:57:52Z | |
dc.date.available | 2022-10-15T04:51:56Z | |
dc.date.created | 2021-07-26T12:57:52Z | |
dc.date.issued | 2020-11 | |
dc.identifier | Fernandez Bonder, Julian; Salort, Ariel Martin; Stability of solutions for nonlocal problems; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 200; 11-2020; 1-13 | |
dc.identifier | 0362-546X | |
dc.identifier | http://hdl.handle.net/11336/136902 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4346901 | |
dc.description.abstract | In this paper we deal with the stability of solutions to fractional p-Laplace problems with nonlinear sources when the fractional parameter s goes to 1. We prove a general convergence result for general weak solutions which is applied to study the convergence of ground state solutions of p−fractional problems in bounded and unbounded domains as s goes to 1. Moreover, our result applies to treat the stability of p−fractional eigenvalues as s goes to 1. | |
dc.language | eng | |
dc.publisher | Pergamon-Elsevier Science Ltd | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.na.2020.112080 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0362546X20302662?via%3Dihub | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS | |
dc.subject | SINGULAR NONLINEAR INTEGRAL EQUATIONS | |
dc.subject | STABILITY | |
dc.title | Stability of solutions for nonlocal problems | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |