dc.creatorFernandez Bonder, Julian
dc.creatorSalort, Ariel Martin
dc.date.accessioned2021-07-26T12:57:52Z
dc.date.accessioned2022-10-15T04:51:56Z
dc.date.available2021-07-26T12:57:52Z
dc.date.available2022-10-15T04:51:56Z
dc.date.created2021-07-26T12:57:52Z
dc.date.issued2020-11
dc.identifierFernandez Bonder, Julian; Salort, Ariel Martin; Stability of solutions for nonlocal problems; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 200; 11-2020; 1-13
dc.identifier0362-546X
dc.identifierhttp://hdl.handle.net/11336/136902
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4346901
dc.description.abstractIn this paper we deal with the stability of solutions to fractional p-Laplace problems with nonlinear sources when the fractional parameter s goes to 1. We prove a general convergence result for general weak solutions which is applied to study the convergence of ground state solutions of p−fractional problems in bounded and unbounded domains as s goes to 1. Moreover, our result applies to treat the stability of p−fractional eigenvalues as s goes to 1.
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.na.2020.112080
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0362546X20302662?via%3Dihub
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
dc.subjectSINGULAR NONLINEAR INTEGRAL EQUATIONS
dc.subjectSTABILITY
dc.titleStability of solutions for nonlocal problems
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución