dc.creatorMaronna, Ricardo Antonio
dc.creatorMéndez, Fernanda
dc.creatorYohai, Victor Jaime
dc.date.accessioned2022-10-04T11:28:19Z
dc.date.accessioned2022-10-15T04:50:18Z
dc.date.available2022-10-04T11:28:19Z
dc.date.available2022-10-15T04:50:18Z
dc.date.created2022-10-04T11:28:19Z
dc.date.issued2015-03
dc.identifierMaronna, Ricardo Antonio; Méndez, Fernanda; Yohai, Victor Jaime; Robust nonlinear principal components; Springer; Statistics And Computing; 25; 2; 3-2015; 439-448
dc.identifier0960-3174
dc.identifierhttp://hdl.handle.net/11336/171628
dc.identifier1573-1375
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4346774
dc.description.abstractAll known approaches to nonlinear principal components are based on minimizing a quadratic loss, which makes them sensitive to data contamination. A predictive approach in which a spline curve is fit minimizing a residual M-scale is proposed for this problem. For a p-dimensional random sample xi (i=1,…,n) the method finds a function h:R→Rp and a set {t1,…,tn}⊂R that minimize a joint M-scale of the residuals xi−h(ti), where h ranges on the family of splines with a given number of knots. The computation of the curve then becomes the iterative computing of regression S-estimators. The starting values are obtained from a robust linear principal components estimator. A simulation study and the analysis of a real data set indicate that the proposed approach is almost as good as other proposals for row-wise contamination, and is better for element-wise contamination.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11222-013-9442-0
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11222-013-9442-0
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectPRINCIPAL CURVES
dc.subjectS-ESTIMATORS
dc.subjectSPLINES
dc.titleRobust nonlinear principal components
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución