dc.creatorOjea, Ignacio
dc.date.accessioned2022-08-10T13:57:15Z
dc.date.accessioned2022-10-15T04:43:04Z
dc.date.available2022-08-10T13:57:15Z
dc.date.available2022-10-15T04:43:04Z
dc.date.created2022-08-10T13:57:15Z
dc.date.issued2021-08
dc.identifierOjea, Ignacio; Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 8-2021; S879-S907
dc.identifier0764-583X
dc.identifierhttp://hdl.handle.net/11336/164931
dc.identifier2804-7214
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4346176
dc.description.abstractWe study the problem -Δu=f, where f has a point-singularity. In particular, we are interested in f = δx0, a Dirac delta with support in x0, but singularities of the form f|x - x0|-s are also considered. We prove the stability of the Galerkin projection on graded meshes in weighted spaces, with weights given by powers of the distance to x0. We also recover optimal rates of convergence for the finite element method on these graded meshes. Our approach is general and holds both in two and three dimensions. Numerical experiments are shown that verify our results, and lead to interesting observations.
dc.languageeng
dc.publisherEDP Sciences
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1051/m2an/2020065
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.esaim-m2an.org/articles/m2an/abs/2021/01/m2an190167/m2an190167.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectA PRIORI ERROR ESTIMATES
dc.subjectFINITE ELEMENTS
dc.subjectWEIGHTED SOBOLEV SPACES
dc.titleOptimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución