dc.creatorBonder, Julián Fernández
dc.creatorSaintier, Nicolas Bernard Claude
dc.creatorSilva, Analía
dc.date.accessioned2020-10-28T15:39:58Z
dc.date.accessioned2022-10-15T04:37:16Z
dc.date.available2020-10-28T15:39:58Z
dc.date.available2022-10-15T04:37:16Z
dc.date.created2020-10-28T15:39:58Z
dc.date.issued2018-12
dc.identifierBonder, Julián Fernández; Saintier, Nicolas Bernard Claude; Silva, Analía; The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis–Nirenberg problem; Birkhauser Verlag Ag; Nonlinear Differential Equations And Applications; 25; 6; 12-2018; 1-25
dc.identifier1021-9722
dc.identifierhttp://hdl.handle.net/11336/117065
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4345747
dc.description.abstractIn this paper we extend the well-known concentration-compactness principle for the Fractional Laplacian operator in unbounded domains. As an application we show sufficient conditions for the existence of solutions to some critical equations involving the fractional p-Laplacian in the whole Rn.
dc.languageeng
dc.publisherBirkhauser Verlag Ag
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00030-018-0543-5
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.09322v1
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00030-018-0543-5
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCONCENTRATION-COMPACTNESS PRINCIPLE
dc.subjectFRACTIONAL ELLIPTIC-TYPE PROBLEMS
dc.subjectUNBOUNDED DOMAINS
dc.titleThe concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis–Nirenberg problem
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución