dc.creatorRotili, Diego Hernán
dc.creatorSadras, Victor Oscar
dc.creatorAbeledo, Leonor Gabriela
dc.creatorFerreyra, Juan Matías
dc.creatorMicheloud, José Roberto
dc.creatorDuarte, Gustavo Alberto
dc.creatorGirón, Paula
dc.creatorErmácora, Matías
dc.creatorMaddonni, Gustavo Angel
dc.date.accessioned2022-09-12T03:46:56Z
dc.date.accessioned2022-10-15T04:35:24Z
dc.date.available2022-09-12T03:46:56Z
dc.date.available2022-10-15T04:35:24Z
dc.date.created2022-09-12T03:46:56Z
dc.date.issued2021-03
dc.identifierRotili, Diego Hernán; Sadras, Victor Oscar; Abeledo, Leonor Gabriela; Ferreyra, Juan Matías; Micheloud, José Roberto; et al.; Impacts of vegetative and reproductive plasticity associated with tillering in maize crops in low-yielding environments: A physiological framework; Elsevier Science; Field Crops Research; 265; 108107; 3-2021; 1-14
dc.identifier0378-4290
dc.identifierhttp://hdl.handle.net/11336/168241
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4345620
dc.description.abstractSelection for maize (Zea mays L.) grain yield in high-yielding environments at high population densities has favored a compact phenotype tolerant to crowding stress, bearing a single, well-grained ear. However, by contributing to vegetative and reproductive plasticity (i.e., multiple shoots and ears per plant, respectively), tillering may be adaptive in environments with low and variable availability of resources, chiefly water and nutrients, where crops are sown at low plant population density. In this work we present a robust, new conceptual framework for vegetative and reproductive plasticity in maize with direct agronomic applications, combining original data from new experiments and data reviewed from the literature. First, we describe production systems where tillering in maize would be relevant in terms of grain yield. Next, we discuss possible masked effects of genetic selection at high plant densities on tillering and present novel experimental results showing genotypic variation of tillering in modern maize hybrids and genotype x environment x management effects (plant density x location x sowing date) on tillering expression. We follow with a two-part framework to analyze tillering and prolificacy. In the first part (from axillary buds to tillers), we integrate the early effects of the light environment (through photomorphogenesis) and carbon balance on tillering emission, and discuss the environmental factors (temperature, photoperiod, radiation, water, nitrogen) that modulate tiller emission and tiller growth. In the second part (from tillers to kernels), we summarize the functional relationships governing kernel set on the ears of main shoot (apical and sub-apical ears) and tillers, focusing on the growth rate of shoot cohorts, rather than the whole plant. We then provide examples of the diverse patterns of contribution of multiple shoots to crop grain yield for maize husbandry in low-yielding environments. Finally, we address the effect of tillering on resource capture and use efficiency of maize crops by discussing its relationship with biomass and grain yield and provide supportive experimental data. We conclude with identification of knowledge gaps leading to testable hypotheses.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.fcr.2021.108107
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378429021000538
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectENVIRONMENTAL CONTROL
dc.subjectLOW INPUT FARMING
dc.subjectNITROGEN
dc.subjectPLANT POPULATION DENSITY
dc.subjectRADIATION
dc.subjectREPRODUCTIVE PLASTICITY
dc.subjectWATER
dc.subjectYIELD
dc.titleImpacts of vegetative and reproductive plasticity associated with tillering in maize crops in low-yielding environments: A physiological framework
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución