dc.creatorBusaniche, Manuela
dc.creatorMundici, Daniele
dc.date.accessioned2019-09-23T12:51:16Z
dc.date.accessioned2022-10-15T04:34:33Z
dc.date.available2019-09-23T12:51:16Z
dc.date.available2022-10-15T04:34:33Z
dc.date.created2019-09-23T12:51:16Z
dc.date.issued2007-06
dc.identifierBusaniche, Manuela; Mundici, Daniele; Geometry of Robinson consistency in Łukasiewicz logic; Elsevier Science; Annals Of Pure And Applied Logic; 147; 1-2; 6-2007; 1-22
dc.identifier0168-0072
dc.identifierhttp://hdl.handle.net/11336/84081
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4345574
dc.description.abstractWe establish the Robinson joint consistency theorem for the infinite-valued propositional logic of Łukasiewicz. As a corollary we easily obtain the amalgamation property for MV-algebras-the algebras of Łukasiewicz logic: all pre-existing proofs of this latter result make essential use of the Pierce amalgamation theorem for abelian lattice-ordered groups (with strong unit) together with the categorical equivalence Γ between these groups and MV-algebras. Our main tools are elementary and geometric.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.apal.2006.11.003
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectŁUkasiewicz&Nbsp;Logic
dc.subjectAmalgamation
dc.subjectFinite-Valued Logic
dc.subjectFree Mv-Algebra
dc.subjectInfinite-Valued Logic
dc.subjectKrull Depth
dc.subjectMcnaughton Function
dc.subjectMv-Algebra
dc.subjectPrime Ideal
dc.subjectRobinson Joint Consistency
dc.subjectUnimodular Triangulation
dc.titleGeometry of Robinson consistency in Łukasiewicz logic
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución