dc.creatorKeleti, Tamas
dc.creatorShmerkin, Pablo Sebastian
dc.date.accessioned2021-07-02T17:51:14Z
dc.date.accessioned2022-10-15T04:16:57Z
dc.date.available2021-07-02T17:51:14Z
dc.date.available2022-10-15T04:16:57Z
dc.date.created2021-07-02T17:51:14Z
dc.date.issued2019-07
dc.identifierKeleti, Tamas; Shmerkin, Pablo Sebastian; New bounds on the dimensions of planar distance sets; Birkhauser Verlag Ag; Geometric and Functional Analysis; 29; 6; 7-2019; 1886-1948
dc.identifier1016-443X
dc.identifierhttp://hdl.handle.net/11336/135439
dc.identifier1420-8970
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4344245
dc.description.abstractWe prove new bounds on the dimensions of distance sets and pinned distance sets of planar sets. Among other results, we show that if A ⊂ R2 is a Borel set of Hausdorff dimension s > 1, then its distance set has Hausdorff dimension at least 37/54 ≈ 0.685. Moreover, if s ∈ (1, 3/2], then outside of a set of exceptional y of Hausdorff dimension at most 1, the pinned distance set {|x − y| : x ∈ A} has Hausdorff dimension ≥ 2 3 s and packing dimension at least 1 4 (1+s+3s(2 − s)) ≥ 0.933. These estimates improve upon the existing ones by Bourgain, Wolff, Peres–Schlag and Iosevich–Liu for sets of Hausdorff dimension > 1. Our proof uses a multi-scale decomposition of measures in which, unlike previous works, we are able to choose the scales subject to certain constrains. This leads to a combinatorial problem, which is a key new ingredient of our approach, and which we solve completely by optimizing certain variation of Lipschitz functions.
dc.languageeng
dc.publisherBirkhauser Verlag Ag
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00039-019-00500-9
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00039-019-00500-9
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1801.08745
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDISTANCE SETS
dc.subjectFALCONER’S PROBLEM
dc.subjectHAUSDORFF DIMENSION
dc.subjectLIPSCHITZ FUNCTIONS
dc.subjectPACKING DIMENSION
dc.subjectPINNED DISTANCE SETS
dc.titleNew bounds on the dimensions of planar distance sets
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución