dc.creator | Keleti, Tamas | |
dc.creator | Shmerkin, Pablo Sebastian | |
dc.date.accessioned | 2021-07-02T17:51:14Z | |
dc.date.accessioned | 2022-10-15T04:16:57Z | |
dc.date.available | 2021-07-02T17:51:14Z | |
dc.date.available | 2022-10-15T04:16:57Z | |
dc.date.created | 2021-07-02T17:51:14Z | |
dc.date.issued | 2019-07 | |
dc.identifier | Keleti, Tamas; Shmerkin, Pablo Sebastian; New bounds on the dimensions of planar distance sets; Birkhauser Verlag Ag; Geometric and Functional Analysis; 29; 6; 7-2019; 1886-1948 | |
dc.identifier | 1016-443X | |
dc.identifier | http://hdl.handle.net/11336/135439 | |
dc.identifier | 1420-8970 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4344245 | |
dc.description.abstract | We prove new bounds on the dimensions of distance sets and pinned distance sets of planar sets. Among other results, we show that if A ⊂ R2 is a Borel set of Hausdorff dimension s > 1, then its distance set has Hausdorff dimension at least 37/54 ≈ 0.685. Moreover, if s ∈ (1, 3/2], then outside of a set of exceptional y of Hausdorff dimension at most 1, the pinned distance set {|x − y| : x ∈ A} has Hausdorff dimension ≥ 2 3 s and packing dimension at least 1 4 (1+s+3s(2 − s)) ≥ 0.933. These estimates improve upon the existing ones by Bourgain, Wolff, Peres–Schlag and Iosevich–Liu for sets of Hausdorff dimension > 1. Our proof uses a multi-scale decomposition of measures in which, unlike previous works, we are able to choose the scales subject to certain constrains. This leads to a combinatorial problem, which is a key new ingredient of our approach, and which we solve completely by optimizing certain variation of Lipschitz functions. | |
dc.language | eng | |
dc.publisher | Birkhauser Verlag Ag | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00039-019-00500-9 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00039-019-00500-9 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1801.08745 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | DISTANCE SETS | |
dc.subject | FALCONER’S PROBLEM | |
dc.subject | HAUSDORFF DIMENSION | |
dc.subject | LIPSCHITZ FUNCTIONS | |
dc.subject | PACKING DIMENSION | |
dc.subject | PINNED DISTANCE SETS | |
dc.title | New bounds on the dimensions of planar distance sets | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |