dc.creatorCorach, Gustavo
dc.creatorMaestripieri, Alejandra Laura
dc.creatorStojanoff, Demetrio
dc.date.accessioned2020-08-04T16:05:38Z
dc.date.accessioned2022-10-15T04:11:47Z
dc.date.available2020-08-04T16:05:38Z
dc.date.available2022-10-15T04:11:47Z
dc.date.created2020-08-04T16:05:38Z
dc.date.issued2002-08
dc.identifierCorach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio; Oblique Projections and Abstract Splines; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 117; 2; 8-2002; 189-206
dc.identifier0021-9045
dc.identifierhttp://hdl.handle.net/11336/110824
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4343814
dc.description.abstractGiven a closed subspace S of a Hilbert space H and a bounded linear operator A ∈ L (H) which is positive, consider the set of all A-self-adjoint projections onto S: P(A,S) ={Q ∈ L(H) : Q^2 = Q, Q(H)=S, AQ = Q*A} In addition, if H_1 is another Hilbert space, T :H→H_1 is a bounded linear operator such that T*T= A and ξ ∈ H, consider the set of (T ,S) spline interpolants to ξ: sP(T,S,ξ)= {n∈ξ +S:∥Tn∥=min_{σ∈s} ∥T(ξ + σ)∥}. A strong relationship exists between P(A, S) and s p(T, S, ξ). In fact, P(A, S) is not empty if and only if s p(T, S, ξ) is not empty for every ξ ∈ H. In this case, for any ξ ∈ H\S it holds s p(T, S, ξ) = {(1 - Q)ξ:Q ∈ P(A, S)} and for any ξ ∈ H, the unique vector of s p(T, S, ξ) with minimal norm is (1 - P_A,S)ξ, where P_A,S is a distinguished element of P(A, S). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1006/jath.2002.3696
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/https://www.sciencedirect.com/science/article/pii/S0021904502936968?via%3Dihub
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectoblique projection
dc.subjectspline
dc.titleOblique Projections and Abstract Splines
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución