dc.creatorLo Vercio, Lucas
dc.creatordel Fresno, Mirta Mariana
dc.creatorLarrabide, Ignacio
dc.date.accessioned2021-02-19T00:10:58Z
dc.date.accessioned2022-10-15T04:02:41Z
dc.date.available2021-02-19T00:10:58Z
dc.date.available2022-10-15T04:02:41Z
dc.date.created2021-02-19T00:10:58Z
dc.date.issued2019-08
dc.identifierLo Vercio, Lucas; del Fresno, Mirta Mariana; Larrabide, Ignacio; Lumen-intima and media-adventitia segmentation in IVUS images using supervised classifications of arterial layers and morphological structures; Elsevier; Computer Methods And Programs In Biomedicine; 177; 8-2019; 113-121
dc.identifier0169-2607
dc.identifierhttp://hdl.handle.net/11336/126028
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4343231
dc.description.abstractBackground: Intravascular ultrasound (IVUS) provides axial grey-scale images of blood vessels. The large number of images require automatic analysis, specifically to identify the lumen and outer vessel wall. However, the high amount of noise, the presence of artifacts and anatomical structures, such as bifurcations, calcifications and fibrotic plaques, usually hinder the proper automatic segmentation of the vessel wall. Methods: Lumen, media, adventitia and surrounding tissues are automatically detected using Support Vector Machines (SVMs). The classification performance of the SVMs vary according to the kind of structure present within each region of the image. Random Forest (RF) is used to detect different morphological structures and to modify the initial layer classification depending on the detected structure. The resulting classification maps are fed into a segmentation method based on deformable contours to detect lumen-intima (LI) and media-adventitia (MA) interfaces. Results: The modifications in the layer classifications according to the presence of structures proved to be effective improving LI and MA segmentations. The proposed method reaches a Jaccard Measure (JM) of 0.88 ± 0.08 for LI segmentation, compared with 0.88 ± 0.05 of a semiautomatic method. When looking at MA, our method reaches a JM of 0.84 ± 0.09, and outperforms previous automatic methods in terms of HD, with 0.51mm ± 0.30. Conclusions: A simple modification to the arterial layer classification produces results that match and improve state-of-the-art fully-automatic segmentation methods for LI and MA in 20MHz IVUS images. For LI segmentation, the proposed automatic method performs accurately as semi-automatic methods. For MA segmentation, our method matched the quality of state-of-the-art automatic methods described in the literature. Furthermore, our implementation is modular and open-source, allowing for future extensions and improvements.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169260718318224?via%3Dihub
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cmpb.2019.05.021
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectIVUS
dc.subjectLUMEN-INTIMA
dc.subjectMEDIA-ADVENTITIA
dc.subjectRANDOM FOREST
dc.subjectDEFORMABLE CONTOURS
dc.titleLumen-intima and media-adventitia segmentation in IVUS images using supervised classifications of arterial layers and morphological structures
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución