dc.contributorWallach, H.
dc.contributorLarochelle, H.
dc.contributorBeygelzimer, A.
dc.contributord'Alché Buc, F.
dc.contributorFox, E.
dc.contributorGarnett, R.
dc.creatorAminmansour, Farzane
dc.creatorPatterson, Andrew
dc.creatorLe, Lei
dc.creatorPeng, Yisu
dc.creatorMitchell, Daniel
dc.creatorPestilli, Franco
dc.creatorCaiafa, César Federico
dc.creatorGreiner, Russell
dc.creatorWhite, Martha Carolina
dc.date.accessioned2021-05-25T22:41:08Z
dc.date.accessioned2022-10-15T03:55:01Z
dc.date.available2021-05-25T22:41:08Z
dc.date.available2022-10-15T03:55:01Z
dc.date.created2021-05-25T22:41:08Z
dc.date.issued2019
dc.identifierLearning Macroscopic Brain Connectomes via Group-Sparse Factorization; Thirty-third Conference on Neural Information Processing Systems; Vancouver; Canadá; 2019; 1-22
dc.identifierhttp://hdl.handle.net/11336/132537
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4342521
dc.description.abstractMapping structural brain connectomes for living human brains typically requires expert analysis and rule-based models on diffusion-weighted magnetic resonance imaging. A data-driven approach, however, could overcome limitations in such rulebased approaches and improve precision mappings for individuals. In this work, we explore a framework that facilitates applying learning algorithms to automatically extract brain connectomes. Using a tensor encoding, we design an objective with a group-regularizer that prefers biologically plausible fascicle structure. We show that the objective is convex and has unique solutions, ensuring identifiable connectomes for an individual. We develop an efficient optimization strategy for this extremely high-dimensional sparse problem, by reducing the number of parameters using a greedy algorithm designed specifically for the problem. We show that this greedy algorithm significantly improves on a standard greedy algorithm, called Orthogonal Matching Pursuit. We conclude with an analysis of the solutions found by our method, showing we can accurately reconstruct the diffusion information while maintaining contiguous fascicles with smooth direction changes.
dc.languageeng
dc.publisherNeural Information Processing Systems
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://nips.cc/Conferences/2019/
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://proceedings.neurips.cc/paper/2019
dc.relationhttps://papers.nips.cc/paper/2019/hash/0bfce127947574733b19da0f30739fcd-Abstract.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceAdvances in Neural Information Processing Systems (NeurIPS 2019)
dc.subjectConnectome
dc.subjectSparse representation
dc.subjectDiffusion MRI
dc.titleLearning Macroscopic Brain Connectomes via Group-Sparse Factorization
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.typeinfo:ar-repo/semantics/documento de conferencia


Este ítem pertenece a la siguiente institución