dc.creatorWalsh, Miguel Nicolás
dc.date.accessioned2019-01-21T17:25:15Z
dc.date.accessioned2022-10-15T03:51:34Z
dc.date.available2019-01-21T17:25:15Z
dc.date.available2022-10-15T03:51:34Z
dc.date.created2019-01-21T17:25:15Z
dc.date.issued2012-07
dc.identifierWalsh, Miguel Nicolás; The inverse Sieve problem in high dimensions; Duke University Press; Duke Mathematical Journal; 161; 10; 7-2012; 2001-2022
dc.identifier0012-7094
dc.identifierhttp://hdl.handle.net/11336/68296
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4342188
dc.description.abstractWe show that if a big set of integer points S ⊆ [0, N] d, d > 1, occupies few residue classes mod p for many primes p, then it must essentially lie in the solution set of some polynomial equation of low degree. This answers a question of Helfgott and Venkatesh.
dc.languageeng
dc.publisherDuke University Press
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.dmj/1340801630
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1215/00127094-1645788
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectSieve theory
dc.subjectArithmetic Combinatorics
dc.subjectInverse sieve problem
dc.subjectPolynomial method
dc.titleThe inverse Sieve problem in high dimensions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución