dc.creatorMassri, Cesar Dario
dc.creatorHolik, Federico Hernán
dc.creatorPlastino, Ángel Luis
dc.date.accessioned2021-07-26T12:32:14Z
dc.date.accessioned2022-10-15T03:47:37Z
dc.date.available2021-07-26T12:32:14Z
dc.date.available2022-10-15T03:47:37Z
dc.date.created2021-07-26T12:32:14Z
dc.date.issued2019-06
dc.identifierMassri, Cesar Dario; Holik, Federico Hernán; Plastino, Ángel Luis; States in generalized probabilistic models: An approach based in algebraic geometry; De Gruyter; Mathematica Slovaca; 69; 1; 6-2019; 53-70
dc.identifier0139-9918
dc.identifierhttp://hdl.handle.net/11336/136900
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4341769
dc.description.abstractWe present a characterization of states in generalized probabilistic models by appealing to a non-commutative version of geometric probability theory based on algebraic geometry techniques. Our theoretical framework allows for incorporation of invariant states in a natural way.
dc.languageeng
dc.publisherDe Gruyter
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/ms-2017-0202/html
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/ms-2017-0202
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectALGEBRAIC GEOMETRY
dc.subjectINVARIANT STATES
dc.subjectLATTICE THEORY
dc.subjectNON-COMMUTATIVE MEASURE THEORY
dc.subjectQUANTUM PROBABILITY
dc.subjectQUANTUM STATES
dc.titleStates in generalized probabilistic models: An approach based in algebraic geometry
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución