dc.creatorCesari, Adriana Belen
dc.creatorPaulucci, Natalia Soledad
dc.creatorLópez Gómez, Miguel
dc.creatorHidalgo Catellano, Javier
dc.creatorLuch Plá, Carmen
dc.creatorDardanelli, Marta Susana
dc.date.accessioned2021-01-18T20:54:26Z
dc.date.accessioned2022-10-15T03:46:59Z
dc.date.available2021-01-18T20:54:26Z
dc.date.available2022-10-15T03:46:59Z
dc.date.created2021-01-18T20:54:26Z
dc.date.issued2019-09
dc.identifierCesari, Adriana Belen; Paulucci, Natalia Soledad; López Gómez, Miguel; Hidalgo Catellano, Javier; Luch Plá, Carmen; et al.; Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth; Elsevier France-editions Scientifiques Medicales Elsevier; Plant Physiology and Biochemistry; 142; 9-2019; 519-527
dc.identifier0981-9428
dc.identifierhttp://hdl.handle.net/11336/122939
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4341705
dc.description.abstractWater deficit is one of the most serious environmental factors that affect the productivity of crops in the world. Arachis hypogaea is a legume with a high nutritional value and 70% is cultivated in semi-arid regions. This research aimed to study the effect of water deficit on peanut root exudates composition, analyzing the importance of exudates on peanut-PGPR interaction under restrictive water condition.Peanut seedlings were subjected to six treatments: 0 and 15 mM PEG, in combination with non-inoculated, Bradyrhizobium sp. and Bradyrhizobium-Azospirillum brasilense inoculated treatments. We analyzed the 7-day peanut root exudate in response to a water restrictive condition and the presence of bacterial inocula. Molecular analysis was performed by HPLC, UPLC and GC. Bacteria motility, chemotaxis, bacterial adhesion to peanut roots and peanut growth parameters were analyzed. Restrictive water condition modified the pattern of molecules exuded by roots, increasing the exudation of Naringenin, oleic FA, citric and lactic acid, and stimulation the release of terpenes of known antioxidant and antimicrobial activity. The presence of microorganisms modified the composition of root exudates. Water deficit affected the first events of peanut-PGPR interaction and the root exudates favored bacterial mobility, the chemotaxis and attachment of bacteria to peanut roots.Changes in the profile of molecules exuded by roots allowed A. hypogaea-Bradyrhizobium and A.hypogaea?Bradyrhizobium-Azospirillum interaction thus reversing the negative effects of restrictive water condition on peanut growth. These findings have a future potential application to improve plant-PGPR interactions under water deficit by formulating inoculants containing key molecules exuded during stress.
dc.languageeng
dc.publisherElsevier France-editions Scientifiques Medicales Elsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.plaphy.2019.08.015
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://www.sciencedirect.com/science/article/abs/pii/S0981942819303213
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArachis hypogaea
dc.subjectRhizobacteria
dc.subjectRestrictive water condition
dc.subjectEarly interaction events
dc.subjectRoot exudate
dc.titleRestrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución