dc.creator | Pinoni, Silvina Andrea | |
dc.creator | Lopez Mañanes, Alejandra Antonia | |
dc.date.accessioned | 2022-06-21T12:47:07Z | |
dc.date.accessioned | 2022-10-15T03:41:07Z | |
dc.date.available | 2022-06-21T12:47:07Z | |
dc.date.available | 2022-10-15T03:41:07Z | |
dc.date.created | 2022-06-21T12:47:07Z | |
dc.date.issued | 2009-04 | |
dc.identifier | Pinoni, Silvina Andrea; Lopez Mañanes, Alejandra Antonia; Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 372; 1-2; 4-2009; 91-97 | |
dc.identifier | 0022-0981 | |
dc.identifier | http://hdl.handle.net/11336/160062 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4341147 | |
dc.description.abstract | The occurrence and characteristics of ouabain-insensitive Na+ ATPase activity and the response to environmental salinity of the coexistent Na+-K+ ATPase and ouabain-insensitive Na+ ATPase activities were studied in chela muscle of the euryhaline crab Neohelice (Chasmagnathus) granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Chela muscle exhibited two ouabain-insensitive Na+ ATPase activities (a furosemide-insensitive and a furosemide-sensitive activity). I50 for ouabain-insensitive, furosemide-sensitive Na+ ATPase activity was about 1.4 mM. Both ouabain-insensitive, furosemide-insensitive and furosemide-sensitive Na+ ATPase activities were weakly affected by pH and showed Michaelis-Menten kinetics (Km = 0.021 and 0.224 mM, respectively). These characteristics appeared to be quite different from those previously described for Na+-K+ ATPase activity in chela muscle of this crab. Na+-K+ ATPase and ouabain-insensitive, furosemide-sensitive Na+ ATPase activities appeared to be sensitive to environmental salinity. In crabs acclimated to low salinity (10‰), a salinity at which N. granulata exhibits a strong hyperregulatory capacity, Na+-K+ ATPase activity was higher (117 ± 26 nmol Pi min- 1 mg prot- 1) than in 35‰ salinity (23 ± 6 nmol Pi min- 1 mg prot- 1) (a salinity at which this crab is osmoionoconforming). On the contrary, ouabain-insensitive, furosemide-sensitive Na+ ATPase activity was higher in 35‰ salinity (108 ±15 nmol Pi min- 1 mg prot- 1) than in crabs acclimated to 10‰ salinity (36 ± 11 nmol Pi min- 1 mg prot- 1). Ouabain-insensitive, furosemide-insensitive Na+ ATPase activity was not affected by acclimation of crabs to low salinity. The response to low salinity suggests that Na+-K+ ATPase could be a component of muscle regulatory mechanisms at the biochemical level secondary to hyperregulation whereas ouabain-insensitive, furosemide-sensitive activity appeared to be predominant upon osmoconforming conditions. The possible differential functional roles of Na+-K+ ATPase and ouabain-insensitive Na+ ATPase activities in muscle are discussed. | |
dc.language | eng | |
dc.publisher | Elsevier Science | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022098109000914 | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jembe.2009.02.012 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | CRABS | |
dc.subject | MUSCLE | |
dc.subject | NA+ ATPASES | |
dc.subject | NEOHELICE GRANULATA | |
dc.subject | OSMOIONOREGULATION | |
dc.title | Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |