dc.creatorSato, Roseli H.
dc.creatorKosaka, Priscila M.
dc.creatorOmori, Álvaro T.
dc.creatorFerreira, Edgard A.
dc.creatorPetri, Denise F. S.
dc.creatorMalvar, Óscar
dc.creatorDomínguez, Carmen M.
dc.creatorPini, Valerio
dc.creatorAhumada, Óscar
dc.creatorTamayo, Javier
dc.creatorCalleja, Montserrat
dc.creatorCunha, Rodrigo L. O. R.
dc.creatorFiorito, Pablo Alejandro
dc.date.accessioned2020-09-02T16:31:15Z
dc.date.accessioned2022-10-15T03:35:53Z
dc.date.available2020-09-02T16:31:15Z
dc.date.available2022-10-15T03:35:53Z
dc.date.created2020-09-02T16:31:15Z
dc.date.issued2019-07
dc.identifierSato, Roseli H.; Kosaka, Priscila M.; Omori, Álvaro T.; Ferreira, Edgard A.; Petri, Denise F. S.; et al.; Development of a methodology for reversible chemical modification of silicon surfaces with application in nanomechanical biosensors; Elsevier Advanced Technology; Biosensors & Bioelectronics; 137; 7-2019; 287-293
dc.identifier0956-5663
dc.identifierhttp://hdl.handle.net/11336/113056
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4340729
dc.description.abstractHypervalent tellurium compounds have a particular reactivity towards thiol compounds which are related to their biological properties. In this work, this property was assembled to tellurium-functionalized surfaces. These compounds were used as linkers in the immobilization process of thiolated biomolecules (such as DNA) on microcantilever surfaces. The telluride derivatives acted as reversible binding agents due to their redox properties, providing the regeneration of microcantilever surfaces and allowing their reuse for further biomolecules immobilizations, recycling the functional surface. Initially, we started from the synthesis of 4-((3-((4-methoxyphenyl) tellanyl) phenyl) amino)-4-oxobutanoic acid, a new compound, which was immobilized on a silicon surface. In nanomechanical systems, the detection involved a hybridization study of thiolated DNA sequences. Fluorescence microscopy technique was used to confirm the immobilization and removal of the telluride-DNA system and provided revealing results about the potentiality of applying redox properties to chalcogen derivatives at surfaces.
dc.languageeng
dc.publisherElsevier Advanced Technology
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0956566319303197
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bios.2019.04.028
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBIOSENSOR
dc.subjectCHALCOGEN CHEMISTRY
dc.subjectMICROCANTILEVER
dc.subjectNANOMECHANICAL BIOSENSORS
dc.subjectREVERSIBLE IMMOBILIZATION
dc.subjectSURFACE REGENERATION
dc.titleDevelopment of a methodology for reversible chemical modification of silicon surfaces with application in nanomechanical biosensors
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución